Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nathan L. Coker, Jeanette A. Krause Bauer and R. C. Elder*

Department of Chemistry, University of Cincinnati, OH 45221-0172, USA

Correspondence e-mail: Richard.Elder@uc.edu

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.018$
$w R$ factor $=0.038$
Data-to-parameter ratio $=31.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(1,4,7,10,13,16-Hexaoxacyclooctadecane)potassium dithiocyanatoaurate(I)

In the title compound, $\left[K\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}\right)\right]\left[\mathrm{Au}(\mathrm{SCN})_{2}\right]$, the Au^{I} atom is in a linear configuration with respect to the coordinating S atoms. The encapsulation of the K^{+}ion by the 18 -crown- 6 ligand produces a large cation and prevents $\mathrm{Au} \cdots \mathrm{Au}$ interactions within the extended structure. Both Au and K occupy inversion centers.

Comment

We have reported the crystal structures of the alkali $\left(\mathrm{K}^{+}, \mathrm{Rb}^{+}\right.$ and Cs^{+}), $\mathrm{NMe}_{4}^{+}, \mathrm{NBu}_{4}^{+}$and $\mathrm{PPh}_{4}{ }^{+}$salts of bis(thiocyanato)aurate(I) (Coker et al., 2004). Recently, we have isolated and structurally characterized the $\mathrm{NH}_{4}{ }^{+}$salt of this anion (Bedel et al., 2004). It has been established that these compounds form monomers, dimers or polymeric chains of Au atoms. The formation and polymer propagation are related to the size of the counter-ion in the system. In the present work, the structure of the title compound, (I), is reported.

(I)

The geometry of the $\mathrm{Au}(\mathrm{SCN})_{2}{ }^{-}$(Fig. 1) anion in (I) is similar to that of the same species in tetraphenylphosphonium bis(thiocyanato)aurate(I) (Coker et al., 2004) and tetraphenylarsonium bis(thiocyanato)aurate(I) (Schwerdferger et al., 1990), which have larger counter-ions. The Au and K atoms of (I) lie on inversion centers, at $\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and $(0,0,0)$, respectively. The angles and distances that apply to the bis(thiocyanato)aurate(I) anion compare reasonably with the referenced complexes. Because of the symmetry of the $P \overline{1}$ space group, the $\mathrm{C}-\mathrm{S} \cdots \mathrm{S}-\mathrm{C}$ torsion angle is 180°. Tetraphenylarsonium bis(thiocyanato)aurate(I) has an $\mathrm{Au}-\mathrm{S}$ distance of 2.295 (5) \AA and $\mathrm{Au}-\mathrm{S}-\mathrm{C}, \mathrm{S}-\mathrm{Au}-\mathrm{S}$ and $\mathrm{S}-\mathrm{C}-$ N angles of 100.9 (4), 180.0 (10) and 175.9 (12) ${ }^{\circ}$, respectively. Tetraphenylphosphonium bis(thiocyanato)aurate(I) has corresponding distances and angles of $2.294(2) \AA$, and 101.2 (2), 180.0 and 175.6 (7) ${ }^{\circ}$.

Received 11 May 2004 Accepted 12 May 2004 Online 22 May 2004

The extended structure of (I) contains a zigzag polymeric chain of anions and cations (Fig. 2). This polymeric chain is formed by the coordination of the N atom of the thiocyanate to the vacant coordination sites on the K atom, making the K atom eight-coordinate. A similar type of configuration is seen for various crown-ether compounds with alkali cations (Steed, 2001) and, in particular, $\left[\mathrm{K}(18\right.$-crown-6) $]\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ (Schlueter \& Geiser, 2003). The distances of the K‥N interactions for the Ag complex are 2.860 (2) and 2.856 (2) \AA, while for (I) the distance is 2.8699 (19) \AA.

Experimental

Potassium bis(thiocyanato)aurate(I) was prepared following the method described by Coker et al. (2004). The complex was prepared by mixing $10 \mathrm{~m} M$ acetonitrile solutions of potassium bis(thiocyanato)aurate(I) (2 ml) and 1,4,7,10,13,16 hexaoxacyclooctadecane (18 -crown- 6 ether) $(2 \mathrm{ml})$. The mixed solution was stirred for 30 min and filtered. Crystals were obtained as colorless plates by slow diffusion of diethyl ether into an acetonitrile solution at 277 K .

Crystal data

$\left[\mathrm{K}\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}\right)\right]\left[\mathrm{Au}(\mathrm{SCN})_{2}\right]$
$M_{r}=616.54$
Triclinic, $P \overline{1}$
$a=7.2401$ (2) A
$b=8.0946$ (2) \AA
$c=10.2386$ (3) \AA
$\alpha=75.814(1)^{\circ}$
$\beta=70.486(1)^{\circ}$
$\gamma=73.894(1)^{\circ}$
$V=535.63(3) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.911 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 4565
reflections
$\theta=2.1-32.2^{\circ}$
$\mu=7.29 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
Plate, colorless
$0.12 \times 0.12 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART 6000 CCD diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.447, T_{\text {max }}=0.558$
9875 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.039$
$S=1.09$
3771 reflections
121 parameters
H -atom parameters constrained

Figure 1
A view of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme for the contents of the asymmetric unit. Dashed lines show the interactions with the potassium cation.

Figure 2
Fragments of the infinite chains (I).
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

JAKB thanks Dr Alan Pinkerton (Department of Chemistry, University of Toledo) for use of the SMART 6000 CCD diffractometer.

References

Bedel, C. E., Coker, N. L., Krause Bauer, J. A. \& Elder, R. C. (2004). J. Chem. Cryst. In preparation.

metal-organic papers

Bruker (2002). SMART (Version 5.622), SAINT (Version 6.02A) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
Coker, N. L., Krause Bauer, J. A. \& Elder, R. C. (2004). J. Am. Chem. Soc. 126, 12-13.
Schlueter, J. A. \& Geiser, U. (2003). Acta Cryst. C59, m325-m327.

Schwerdferger, P., Boyd, P. D., Burrell, A. K., Robinson, W. T. \& Taylor, M. J (1990). Inorg. Chem. 29, 3593-3607.

Sheldrick, G. M. (2001). SADABS. Version 2.05. University of Göttingen, Germany.
Steed, J. W. (2001). Coord. Chem. Rev. 215, 171-221.

